[摘要:在前面的PCB线路板差分阻抗测试技术(一)、(二)中我们了解到差分阻抗测试的基本原理及测试方法,在PCB线路板差分阻抗测试技术(三)中我们会学习差分阻搞测试过程及过程中遇到的问题与解决方法。电路板厂家为解决伪差分TDR设备难以实现对PCB内部真实走线进行差分TDR测量的问题。]
电路板厂家为解决伪差分TDR设备难以实现对PCB内部真实走线进行差分TDR测量的问题,一般的PCB线路板厂家都会在PCB板周围加上具有接地点的差分走线测试条,称为‘Coupon’,图10为典型的阻抗PCB板,上方是测试用‘Coupon’,下方是板内的真实走线。为方便探棒连接,测试点的间距通常达100mil (2.54mm),已大幅超越差分走线间距;测试点旁边还会放置接地点,间距同样为100mil。
图10:电路板上Coupon与真实走线的差别
Coupon测试的局限性与差异
从图10中可看到测试‘coupon’和板内真实走线间的差别:
1. 虽然走线间距、走线宽度一致,但coupon测试点的间距固定为100mil(即最初的双列直插式IC接脚间距),而板内真实走线的末端(即芯片接脚)间距是不同的,随着QFP、PLCC、BGA封装的出现,芯片接脚间距远小于双列直插式IC封装间距。
2. coupon走线是理想的直线,而板内真实走线往往是弯曲的。PCB设计人员和生产人员很容易将coupon的走线理想化,但PCB上的真实走线则会因为各种因素导致走线不规则。
3. coupon与板内真实走线在整个PCB上的位置不同。coupon都位于PCB边缘,在PCB出厂时往往会被生产商去掉。而板内真实走线的位置则相当多样,有的靠近电路板边缘,有的位于板中央。
由于上述差异,导致coupon的特征阻抗往往与板内真实走线阻抗存在几项差异。首先是coupon测试点间距与coupon走线的间距不同,导致测试点与走线之间的阻抗不连续。而PCB内的真实差分走线末端(即芯片接脚)间距往往与走线间距相等或非常相近,因此会带来不同的阻抗测试结果。
其次是弯曲的走线与理想走线反映的阻抗变化不一致。在走线弯折处的特征阻抗往往不连续,而coupon的理想化走线则不能反映由于走线弯曲所带来的阻抗不连续现象。
第三是coupon与真实走线在PCB上的位置不同。目前的PCB均采多层走线设计,在生产时需经过压制。当PCB压制时,电路板上的不同位置所受到的压力也不可能一致,如此将导致PCB不同位置上的介电常数不同,特征阻抗也当然不同。
由此可见,仅对PCB的coupon进行TDR测试并不能完全反映PCB内真实走线的特征阻抗。无论是PCB生产商、高速电路设计人员或制造者,都希望能对PCB内的真实高速差分走线直接进行TDR测试,以获得准确的特征阻抗信息。阻碍真实测试的主要原因有两项:难以找到差分TDR探棒的接地点;以及差分走线的末端间距是多变的。
差分TDR测试优势
如果TDR设备发出的阶跃讯号是差分讯号,就可以实现虚拟接地,即差分TDR探棒无需与被测试的PCB接地。只要测试者手中有一个间距可调的差分TDR探棒即可完成测试。
图11是一个带宽达18GHz的差分TDR探棒在进行差分TDR测试时的情况。它的探针间距可在0.5mm~4.5mm间连续可调,即使在测试一个比圆珠笔尖还微小的测试点时,仍能让设计人员以单手完成作业。
图11:高带宽差分TDR探棒进行精密的TDR探测
由于探棒带宽达18GHz,因此可获得很高的测试分辨率,图12是对coupon差分走线进行测试时获得的结果。红色波形是对coupon最初的测试结果,随后在走在线贴上了一个很小的胶条(红色圆圈所示部位)然后再进行测试,获得了如白色波形的测试结果,显示出仅贴上小胶条所带来的微小阻抗不连续也能透过高带宽差分TDR探棒清晰地反映出来。
图12:高带宽TDR差分探棒进行PCB差分探测获得的结果
真实差分的TDR设备配合高带宽差分探棒进行PCB差分特征阻抗测试时,无需在PCB内辛苦地寻找接地点,只要探针调整到合适的间距,即可轻松对PCB内的真实差分走线进行探测。
综上所述,PCB线路板厂家使用一台真实差分的TDR设备,并利用差分讯号可实现虚拟接地的便利性,再搭配间距可调的差分TDR探棒,将能轻松实现对PCB内真实差分走线的特征阻抗测量,让高速PCB设计人员和电路板厂家在进行PCB线路板差分阻抗测试时获得极高的测试效率和准确的测试结果。 PCB线路板差分阻抗测试技术先介绍到这里,后续会有更多的PCB线路板阻抗测试技术资料承现。